Li FT Stock Forecast - Simple Regression
WS0 Stock | 1.79 0.07 4.07% |
WS0 |
Li FT Simple Regression Price Forecast For the 18th of December 2024
Given 90 days horizon, the Simple Regression forecasted value of Li FT Power on the next trading day is expected to be 2.00 with a mean absolute deviation of 0.17, mean absolute percentage error of 0.06, and the sum of the absolute errors of 10.65.Please note that although there have been many attempts to predict WS0 Stock prices using its time series forecasting, we generally do not recommend using it to place bets in the real market. The most commonly used models for forecasting predictions are the autoregressive models, which specify that Li FT's next future price depends linearly on its previous prices and some stochastic term (i.e., imperfectly predictable multiplier).
Li FT Stock Forecast Pattern
Li FT Forecasted Value
In the context of forecasting Li FT's Stock value on the next trading day, we examine the predictive performance of the model to find good statistically significant boundaries of downside and upside scenarios. Li FT's downside and upside margins for the forecasting period are 0.02 and 8.44, respectively. We have considered Li FT's daily market price to evaluate the above model's predictive performance. Remember, however, there is no scientific proof or empirical evidence that traditional linear or nonlinear forecasting models outperform artificial intelligence and frequency domain models to provide accurate forecasts consistently.
Model Predictive Factors
The below table displays some essential indicators generated by the model showing the Simple Regression forecasting method's relative quality and the estimations of the prediction error of Li FT stock data series using in forecasting. Note that when a statistical model is used to represent Li FT stock, the representation will rarely be exact; so some information will be lost using the model to explain the process. AIC estimates the relative amount of information lost by a given model: the less information a model loses, the higher its quality.AIC | Akaike Information Criteria | 115.2216 |
Bias | Arithmetic mean of the errors | None |
MAD | Mean absolute deviation | 0.1747 |
MAPE | Mean absolute percentage error | 0.0829 |
SAE | Sum of the absolute errors | 10.6543 |
Predictive Modules for Li FT
There are currently many different techniques concerning forecasting the market as a whole, as well as predicting future values of individual securities such as Li FT Power. Regardless of method or technology, however, to accurately forecast the stock market is more a matter of luck rather than a particular technique. Nevertheless, trying to predict the stock market accurately is still an essential part of the overall investment decision process. Using different forecasting techniques and comparing the results might improve your chances of accuracy even though unexpected events may often change the market sentiment and impact your forecasting results.Other Forecasting Options for Li FT
For every potential investor in WS0, whether a beginner or expert, Li FT's price movement is the inherent factor that sparks whether it is viable to invest in it or hold it better. WS0 Stock price charts are filled with many 'noises.' These noises can hugely alter the decision one can make regarding investing in WS0. Basic forecasting techniques help filter out the noise by identifying Li FT's price trends.Li FT Related Equities
One of the popular trading techniques among algorithmic traders is to use market-neutral strategies where every trade hedges away some risk. Because there are two separate transactions required, even if one position performs unexpectedly, the other equity can make up some of the losses. Below are some of the equities that can be combined with Li FT stock to make a market-neutral strategy. Peer analysis of Li FT could also be used in its relative valuation, which is a method of valuing Li FT by comparing valuation metrics with similar companies.
Risk & Return | Correlation |
Li FT Power Technical and Predictive Analytics
The stock market is financially volatile. Despite the volatility, there exist limitless possibilities of gaining profits and building passive income portfolios. With the complexity of Li FT's price movements, a comprehensive understanding of forecasting methods that an investor can rely on to make the right move is invaluable. These methods predict trends that assist an investor in predicting the movement of Li FT's current price.Cycle Indicators | ||
Math Operators | ||
Math Transform | ||
Momentum Indicators | ||
Overlap Studies | ||
Pattern Recognition | ||
Price Transform | ||
Statistic Functions | ||
Volatility Indicators | ||
Volume Indicators |
Li FT Market Strength Events
Market strength indicators help investors to evaluate how Li FT stock reacts to ongoing and evolving market conditions. The investors can use it to make informed decisions about market timing, and determine when trading Li FT shares will generate the highest return on investment. By undertsting and applying Li FT stock market strength indicators, traders can identify Li FT Power entry and exit signals to maximize returns.
Li FT Risk Indicators
The analysis of Li FT's basic risk indicators is one of the essential steps in accurately forecasting its future price. The process involves identifying the amount of risk involved in Li FT's investment and either accepting that risk or mitigating it. Along with some essential techniques for forecasting ws0 stock prices, we also provide a set of basic risk indicators that can assist in the individual investment decision or help in hedging the risk of your existing portfolios.
Mean Deviation | 5.03 | |||
Standard Deviation | 6.47 | |||
Variance | 41.91 |
Please note, the risk measures we provide can be used independently or collectively to perform a risk assessment. When comparing two potential investments, we recommend comparing similar equities with homogenous growth potential and valuation from related markets to determine which investment holds the most risk.